BCA 102 Module-I : Cartesian Product of Sets, Relations & Functions

Cartesian Product of Sets, Relations & Functions


🔍 Introduction (परिचय):

Sets को एक साथ मिलाकर ordered pairs बनाना, उनके बीच relation दिखाना और function define करना — ये सभी चीज़ें Cartesian Product की मदद से संभव होती हैं।

इस भाग में हम सीखेंगे:

  • Cartesian Product क्या है
  • Relations कैसे बनते हैं
  • Functions के प्रकार कौन-कौन से होते हैं

🔢 1. Cartesian Product of Sets


📚 Definition:

Let A और B दो sets हों।
तो उनका Cartesian Product A × B होता है: A×B={(a,b) ∣ a∈A and b∈B}

📌 इसका अर्थ: A से एक element और B से एक element का एक ordered pair बनता है।


🧠 Example:

Let A = {1, 2}, B = {x, y}
Then: A×B={(1,x),(1,y),(2,x),(2,y)}

📌 Total Pairs = 2 × 2 = 4


Properties:

  1. A × B ≠ B × A (Generally)
    क्योंकि ordered pairs में position मायने रखती है
  2. If |A| = m, |B| = n ⇒ |A × B| = m × n

🔗 2. Relation (संबंध)


📚 Definition:

A relation R from set A to B is a subset of A × B.
यानि: R⊆A×B

📌 एक relation कुछ selected ordered pairs को represent करता है।


🧠 Example:

A = {1, 2, 3}, B = {4, 5}
Let relation R be: “a is less than b”

Then R = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}

But if we define relation R = {(1,4), (2,5)} ⇒ यह एक specific relation है


📊 Types of Relations (A → A):

  1. Reflexive: (a, a) ∈ R ∀ a ∈ A
  2. Symmetric: (a, b) ∈ R ⇒ (b, a) ∈ R
  3. Transitive: (a, b), (b, c) ∈ R ⇒ (a, c) ∈ R
  4. Equivalence Relation: जब relation reflexive, symmetric और transitive तीनों हो

🧮 3. Function (समाप्रेष) or Mapping


📚 Definition:

A function f from A to B is a relation where every element of A has exactly one image in B.

f: A→B

📌 Each input has only one output.


🧠 Example:

A = {1, 2, 3}, B = {a, b}
f = {(1, a), (2, b), (3, a)}
✅ यह एक function है क्योंकि हर element of A की एक ही image है।


❌ Example of Not a Function:

f = {(1, a), (1, b)}
🚫 Invalid क्योंकि 1 की दो images हैं


🔢 Types of Functions:

Function TypeDescription
One-One (Injective)अलग-अलग input के लिए अलग-अलग output
Onto (Surjective)हर B का element किसी न किसी A से जुड़ा हो
BijectiveOne-One + Onto दोनों हो

🎯 Objectives Recap:

  • Cartesian product से ordered pairs बनाना
  • Relation को subset के रूप में समझना
  • Relation के types: reflexive, symmetric, transitive
  • Function की पहचान और उनके प्रकार जानना
  • Input-output mapping करना सीखना

📝 Exercise (अभ्यास प्रश्न):

📌 Short Answer Questions:

  1. Define Cartesian Product with an example.
  2. What is a relation from A to B?
  3. Define function. How is it different from a relation?

📌 Long Answer / Numerical Questions:

  1. Let A = {1, 2}, B = {3, 4}
    a. Find A × B
    b. List all possible relations from A to B
    c. Is R = {(1, 3), (2, 4)} a function?
  2. Prove with example:
    a. A function is a special type of relation
    b. Every bijective function has an inverse
  3. Let R = {(1,1), (2,2), (3,3)} on set A = {1,2,3}
    Is R reflexive, symmetric, transitive? Justify.