In the context of neural networks, “params” typically refers to the number of parameters in the model. Parameters in a neural network include all the weights and biases that the model learns during training. These parameters determine how the input data is transformed as it passes through the network layers to produce the output.
Understanding Parameters in Neural Networks
- Weights:
- Weights are the coefficients that connect neurons in one layer to neurons in the next layer.
- Each connection between neurons has a weight associated with it.
- Biases:
- Biases are additional parameters that are added to the weighted sum of inputs before applying the activation function.
- Each neuron typically has its own bias.
Calculating Parameters in Different Layers
- Fully Connected (Dense) Layer:
- The number of parameters in a dense layer is calculated as: (number of input units)×(number of output units)+(numberofinputunits)×(numberofoutputunits)+(numberofoutputunits)
- Example: A dense layer with 128 input units and 64 output units has: 128×64+64=8192+64=8256 parameters
- Convolutional Layer:
- The number of parameters in a convolutional layer is calculated as: (number of filters)×(filter height×filter width×number of input channels)
- Example: A convolutional layer with 32 filters, each of size 3×3, and 3 input channels (RGB image) has: 32×(3×3×3)+32=32×27+32=864+32=896 parameters
- Recurrent Layer (e.g., SimpleRNN, LSTM, GRU):
- The number of parameters in a recurrent layer depends on the specific type of RNN.
- For a SimpleRNN layer, the number of parameters is: (number of units)×(number of input features+number of units+1)
- Example: A SimpleRNN layer with 128 units and 64 input features has: 128×(64+128+1)=128×193=24704 parameters
Example: Model Summary
Here’s how to get the summary of a model in Keras, including the number of parameters in each layer:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
# Create a simple RNN model
model = Sequential()
model.add(SimpleRNN(128, input_shape=(5, 10))) # 5 time steps, 10 features
model.add(Dense(10, activation='softmax')) # 10 output classes
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy')
# Print the model summary
model.summary()
The output will show the structure of the model, including the number of parameters in each layer and the total number of parameters.
Example Output of model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
simple_rnn (SimpleRNN) (None, 128) 17792
_________________________________________________________________
dense (Dense) (None, 10) 1290
=================================================================
Total params: 19082
Trainable params: 19082
Non-trainable params: 0
_________________________________________________________________
Explanation of the Output
- SimpleRNN Layer:
- Input shape:
(5, 10)
(5 time steps, 10 features) - Output shape:
(None, 128)
(128 units) - Parameters:
128 * (10 + 128 + 1) = 128 * 139 = 17792
- Input shape:
- Dense Layer:
- Input shape:
(None, 128)
(128 units from the previous layer) - Output shape:
(None, 10)
(10 output classes) - Parameters:
128 * 10 + 10 = 1290
- Input shape:
- Total Params:
- The sum of parameters in all layers:
17792 + 1290 = 19082
- The sum of parameters in all layers:
Understanding the number of parameters in your model is important for both designing the network (to ensure it’s sufficiently powerful) and for training it efficiently (to manage memory and computational requirements).